146 research outputs found

    Convex Optimization Based Bit Allocation for Light Field Compression under Weighting and Consistency Constraints

    Full text link
    Compared with conventional image and video, light field images introduce the weight channel, as well as the visual consistency of rendered view, information that has to be taken into account when compressing the pseudo-temporal-sequence (PTS) created from light field images. In this paper, we propose a novel frame level bit allocation framework for PTS coding. A joint model that measures weighted distortion and visual consistency, combined with an iterative encoding system, yields the optimal bit allocation for each frame by solving a convex optimization problem. Experimental results show that the proposed framework is effective in producing desired distortion distribution based on weights, and achieves up to 24.7% BD-rate reduction comparing to the default rate control algorithm.Comment: published in IEEE Data Compression Conference, 201

    Judging a video by its bitstream cover

    Full text link
    Classifying videos into distinct categories, such as Sport and Music Video, is crucial for multimedia understanding and retrieval, especially in an age where an immense volume of video content is constantly being generated. Traditional methods require video decompression to extract pixel-level features like color, texture, and motion, thereby increasing computational and storage demands. Moreover, these methods often suffer from performance degradation in low-quality videos. We present a novel approach that examines only the post-compression bitstream of a video to perform classification, eliminating the need for bitstream. We validate our approach using a custom-built data set comprising over 29,000 YouTube video clips, totaling 6,000 hours and spanning 11 distinct categories. Our preliminary evaluations indicate precision, accuracy, and recall rates well over 80%. The algorithm operates approximately 15,000 times faster than real-time for 30fps videos, outperforming traditional Dynamic Time Warping (DTW) algorithm by six orders of magnitude

    Long and Diverse Text Generation with Planning-based Hierarchical Variational Model

    Full text link
    Existing neural methods for data-to-text generation are still struggling to produce long and diverse texts: they are insufficient to model input data dynamically during generation, to capture inter-sentence coherence, or to generate diversified expressions. To address these issues, we propose a Planning-based Hierarchical Variational Model (PHVM). Our model first plans a sequence of groups (each group is a subset of input items to be covered by a sentence) and then realizes each sentence conditioned on the planning result and the previously generated context, thereby decomposing long text generation into dependent sentence generation sub-tasks. To capture expression diversity, we devise a hierarchical latent structure where a global planning latent variable models the diversity of reasonable planning and a sequence of local latent variables controls sentence realization. Experiments show that our model outperforms state-of-the-art baselines in long and diverse text generation.Comment: To appear in EMNLP 201

    Phase Fluctuation Analysis in Functional Brain Networks of Scaling EEG for Driver Fatigue Detection

    Get PDF
    The characterization of complex patterns arising from electroencephalogram (EEG) is an important problem with significant applications in identifying different mental states. Based on the operational EEG of drivers, a method is proposed to characterize and distinguish different EEG patterns. The EEG measurements from seven professional taxi drivers were collected under different states. The phase characterization method was used to calculate the instantaneous phase from the EEG measurements. Then, the optimization of drivers’ EEG was realized through performing common spatial pattern analysis. The structures and scaling components of the brain networks from optimized EEG measurements are sensitive to the EEG patterns. The effectiveness of the method is demonstrated, and its applicability is articulated.</p

    A Bayesian Approach to Block Structure Inference in AV1-based Multi-rate Video Encoding

    Full text link
    Due to differences in frame structure, existing multi-rate video encoding algorithms cannot be directly adapted to encoders utilizing special reference frames such as AV1 without introducing substantial rate-distortion loss. To tackle this problem, we propose a novel bayesian block structure inference model inspired by a modification to an HEVC-based algorithm. It estimates the posterior probabilistic distributions of block partitioning, and adapts early terminations in the RDO procedure accordingly. Experimental results show that the proposed method provides flexibility for controlling the tradeoff between speed and coding efficiency, and can achieve an average time saving of 36.1% (up to 50.6%) with negligible bitrate cost.Comment: published in IEEE Data Compression Conference, 201

    Error compensation method of large size steel sheet measurement based on control field

    Get PDF
    Aiming at the problem of low accuracy of large size sheet edge, a method of sheet size error measurement based on control field is proposed. Firstly, an error compensation model of the measuring system based on control field is established by analyzing the causes of the errors of the measuring system. A grid standard plate is designed and the error distribution on the grid line is obtained by using the measurement results of the standard plate. Secondly, the error curve is established according to the distribution, and the trig function theorem is used to project the curve into the image pixel coordinate system. Finally, the control field of the whole measurement area is reconstructed by linear interpolation, and the measurement results are compensated and corrected. The steel sheet is measured in the measuring area of 1.2m x 2.6m on the basis of these theories and technologies. The experiment shows that the precision of the measuring system can reach 1mm per meter, which satisfies the accuracy and speed requirements of large-size steel sheet measurement in industry, and has high application value
    corecore